Public Health Cancer Data Sources

Technical Assistance for Brownfields Program EPA Region 1

Sara Wakai, PhD Assistant Professor, Center for Population Health January, 2025

HEALTH

TAB Program: http://tab.program.uconn.edu

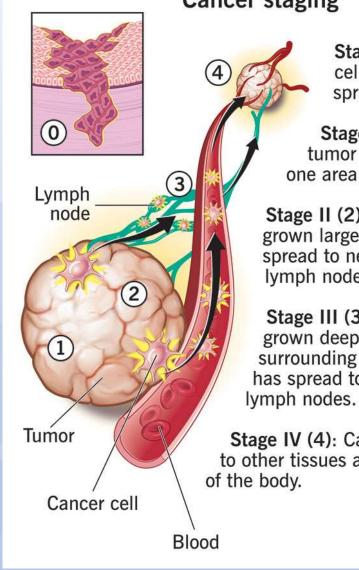
Public Health Cancer Data Sources

Welcome & Introduction

- Sara Wakai, PhD, Assistant Professor
 - UConn Health, Center for Population Health

Acknowledgement - Technical Assistance of Brownfields Program

- ► Randi Mendes, PhD, Program Director
 - Civil and Environmental Engineering, UConn
 - Program Director UConn Technical Assistance for Brownfields Program (TAB).
 Region 1 (New England States)
- Marisa Chrysochoou, PhD, Dean of Engineering
 - School of Engineering, University of Missouri
 - Program Director UConn Technical Assistance for Brownfields Program (TAB). Region 1 (New England States)



Learning Objectives

- Define cancer and associated terms
- Review potential risk factors of cancer
 - Focus on environmental exposures
- Explore data sources that monitor cancer health risks
 - Focus on TAB Region 1 states

Cancer Definitions and Terminology

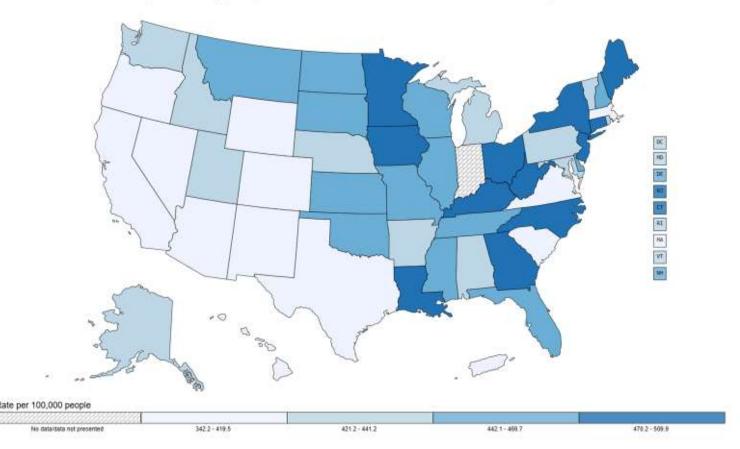
Cancer staging

Stage 0: Abnormal cells that have not spread elsewhere.

Stage I (1): Small tumor contained to one area.

Stage II (2): Tumor has grown larger and possibly spread to nearby lymph nodes.

Stage III (3): Tumor has grown deeper into surrounding tissue and has spread to nearby


Stage IV (4): Cancer has spread to other tissues and distant areas

Cleveland Clinic ©2024

Cancer Incidence Rates Map

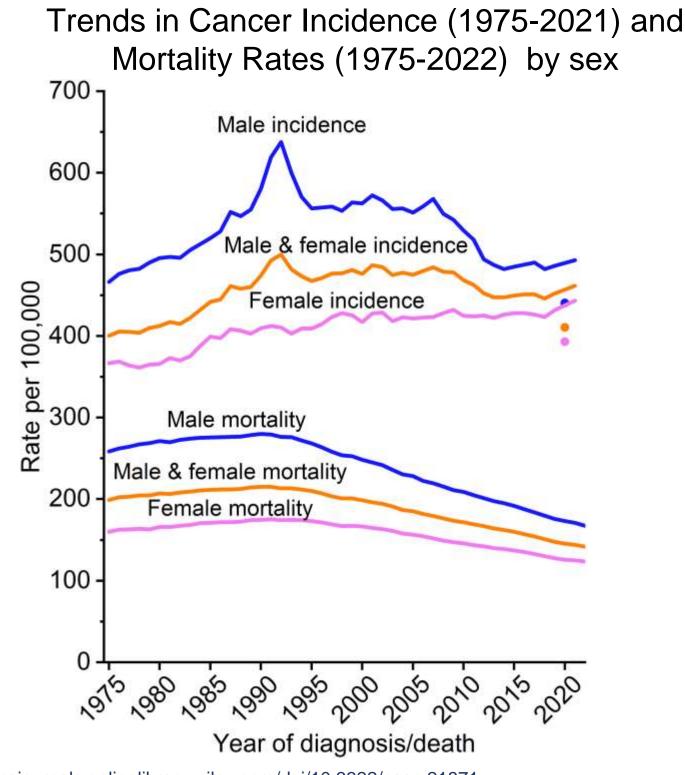
Rate of New Cancers in the United States, 2021 All Types of Cancer, All Ages, All Races and Ethnicities, Male and Female

Source - U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; <u>https://www.cdc.gov/cancer/dataviz</u>, released in June 2024.

Cancer Rates: Incidence and Mortality

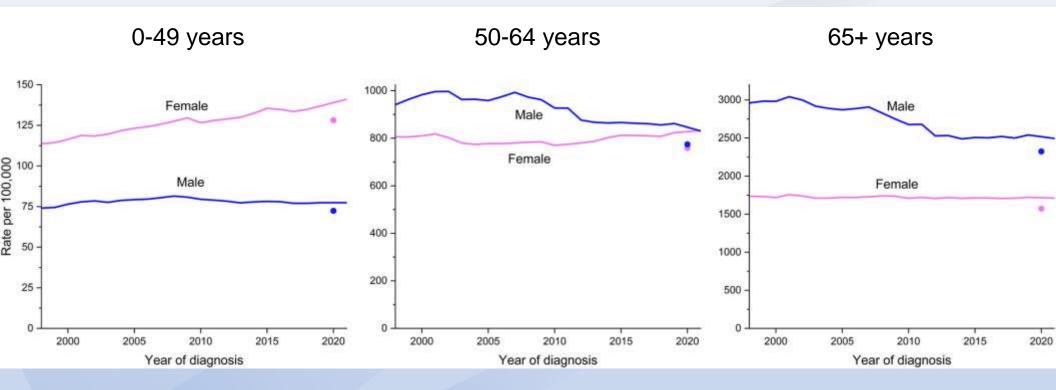
Most common cancers diagnosed in men and women in 2025

				•					
Male					Female				
	Prostate	313,780	30%		Breast	316,950	32%		
	Lung & bronchus	110,680	11%		Lung & bronchus	115,970	12%		
ŝ	Colon & rectum	82,460	8%		Colon & rectum	71,810	7%		
S	Urinary bladder	65,080	6%		Uterine corpus	69,120	7%		
3	Melanoma of the skin	60,550	6%		Melanoma of the skin	44,410	4%		
ž	Kidney & renal pelvis	52,410	5%		Non-Hodgkin lymphoma	35,210	4%		
n e e	Non-Hodgkin lymphoma	45,140	4%		Pancreas	32,490	3%		
	Oral cavity & pharynx	42,500	4%		Thyroid	31,350	3%		
	Leukemia	38,720	4%		Kidney & renal pelvis	28,570	3%		
L .	Pancreas	34,950	3%		Leukemia	28,170	3%		
	All sites	1,053,250	2		All sites	988,660			
	Male				Female				
	Lung & bronchus	64,190	20%		Lung & bronchus	60,540	21%		
27	Prostate	35,770	11%		Breast	42,170	14%		
	Colon & rectum	28,900	9%		Pancreas	24,930	8%		
5	Pancreas	27,050	8%		Colon & rectum	24,000	8%		
sinpan	Liver & intrahepatic bile duct	19,250	6%		Uterine corpus	13,860	5%		
	Leukemia	13,500	4%		Ovary	12,730	4%		
contracted	Esophagus	12,940	4%		Liver & intrahepatic bile duct	10,840	4%		
Ē	Urinary bladder	12,640	4%		Leukemia	10,040	3%		
3	Non-Hodgkin lymphoma	11,060	3%		Non-Hodgkin lymphoma	8,330	3%		
	Brain & other nervous system	10,170	3%		Brain & other nervous system	8,160	3%		
	All sites	323,900			All sites	294,220			

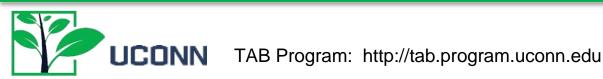

https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21871

Estimated New Cases

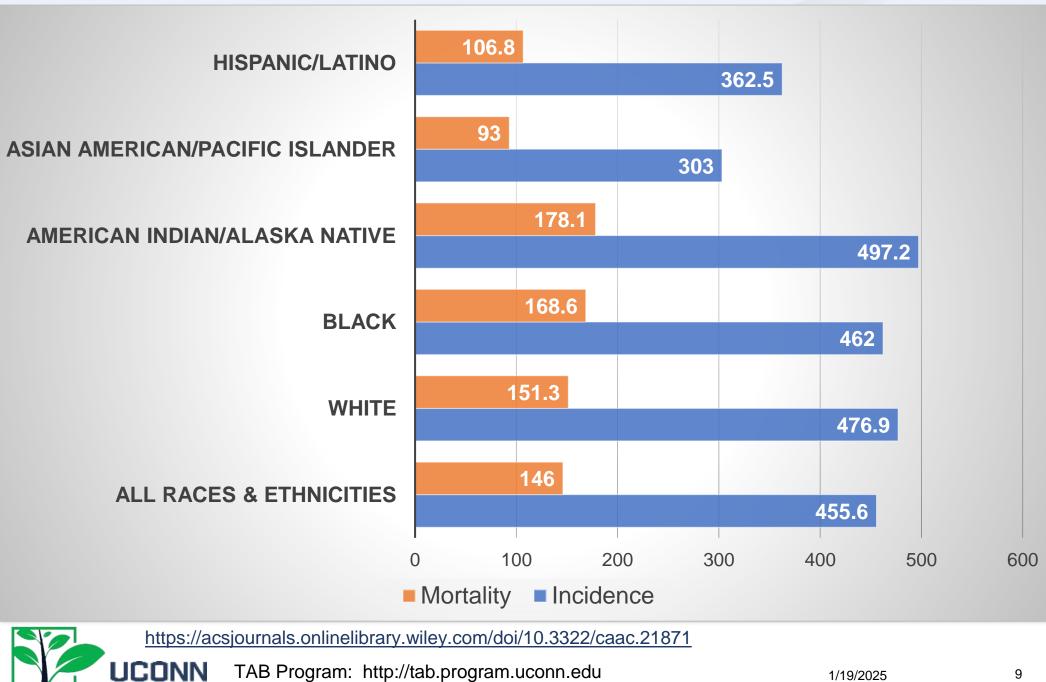
Estimated Deaths


UCONN

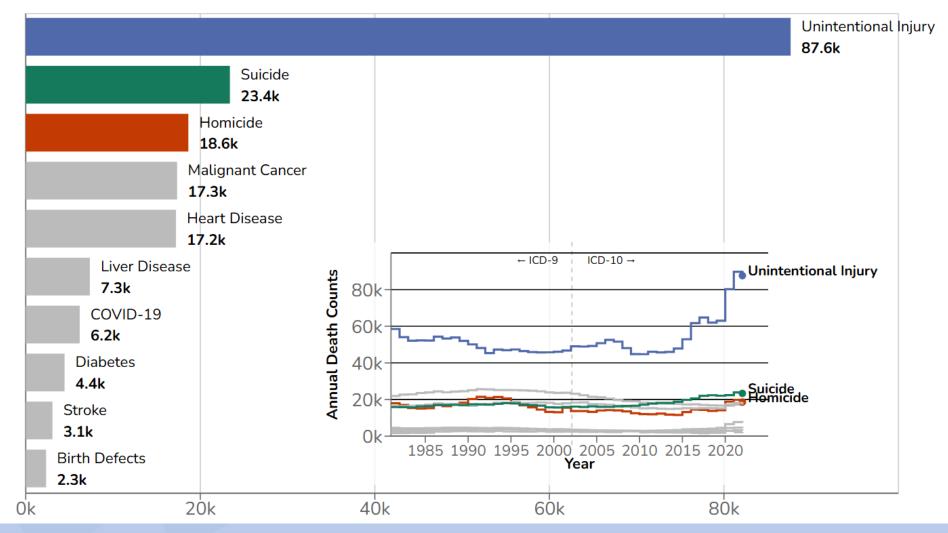
TAB Program: http://tab.program.uconn.edu



Source: https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21871


Cancer Incidence by Age and Sex

https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21871


All Cancer Incidence (2017-2021) & Mortality (2018-2022) Rates by Race & Ethnicity

TAB Program: http://tab.program.uconn.edu

Leading Causes of Death in U.S.: 1981-2022

Total Death Counts per Year

https://wisqars.cdc.gov/animated-leading-causes/

UCONN

Leading Causes of Death by Age Group 2022

10 Leading Causes of Death, Connecticut, Northeast, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont

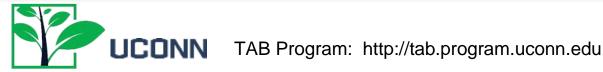
2022, All Deaths with drilldown to ICD codes, All Sexes, All Races, All Ethnicities

📓 Unintentional Injury 📕 Homicide 📕 Suicide

	ন	1-4	<u>5-9</u>	<u>10-14</u>	15-24	25-34	35-44	45-54	55-64	<u>65+</u>	All Ages
1	Congenital Anomalies 896	Unintentional Injury 236	Unintentional Injuty 164	Unintentional Injury. 188	Unintentional Injury 3,350	Unintentional Injury 9,844	Unintentional Injury 12,414	Unintentional Injury 10,942	Malignant Neoplasms 34,998	Heart Disease 208,958	Heart Disease 248,586
2	Short Gestation 638	Congenital Anomalies 108	Malignant Neoplasms 146	Malignant Neoplasms 140	Suicide 1,244	Suicide 2,042	Malignant Neoplasms 3,334	Malignant Neoplasms 10,374	Heart Disease 26,096	Malignant Neoplasms 158,696	Malignant Neoplasms 209,278
3	Sids 374	Malignant Neoplasms 80	Congenital Anomalies 66	Suicite 94	Homicide 1,228	Homicide 1,556	Heart Disease 3,296	Heart Disease 8,776	Unintentional Inlucy 12,512	Covid-19 52,650	Unintentional IOJULY 74,390
4	Moternal Pregnancy Comp. 340	Homicide 78	Homicide 26	Heart Disease	Malignant Neoplasms 448	Malignant Neoplasms 1,044	<u>Suicide</u> 2,014	Covid-19 2,674	Covid-19 7,408	Cerebrovascular 40,174	Covid-19 64,412
5	Unintentional Iniuty 226	Influenza & Pheumonia 40	Heart Disease 24	Homicide 68	Heart Disease 236	Heart Disease 1,030	Liver Disease 1,196	Liver Disease 2,388	Diabetes Meilitus 4,556	Chronic Low. Respiratory Disease 35,696	Cerebrovascular 45,932
6	Bocterial Sepsis 174	Covid-19 34	Chronic Low. Respiratory Disease 22	Congenital Anomalies 56	Covid-19 136	Covid-19 414	Homicide 1,046	<u>Suicide</u> 2,118	Liver Disease 4,316	Alzheimer's Disease 27,776	Chronic Low. Respiratory Disease 41,204
7	Placenta Cord Membranes	Heart Disease	Cerebrovascular	Chronic Low. Respiratory Disease 22	Congenital Anomalies 110	Liver Disease 340	Covid-19 1,014	Diabetes Mellitus 1,786	Chronic Low. Respiratory Disease 4,266	Unicitentional Injury 24,400	Diabetes Mellitus 29,578

https://wisqars.cdc.gov/lcd/?o=LCD&y1=2022&y2=2022&ct=10&cc=ALL&g=09&g=91&g=23&g=25&g=33&g=34&g=36&g=42&g=44&g=50&s=0&r=0&ry=2&e=0&ar=lcd1age&at=groups&ag=lcd1age&a1=0&a2=199

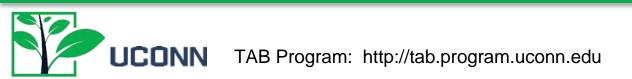
UCONN


NIH National Cancer Institute Cancer Risk Factors

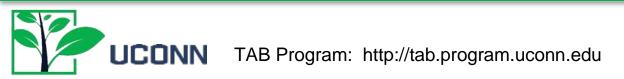
The NIH National Cancer Institute (NCI) has created a list of the most-studied known or suspected risk factors for cancer.

- . <u>Age</u>
- . <u>Alcohol</u>
- Cancer-Causing Substances
- <u>Chronic Inflammation</u>
- Diet
- . <u>Hormones</u>

- Immunosuppression
- . Infectious Agents
- . <u>Obesity</u>
- Radiation
- <u>Sunlight</u>
- <u>Tobacco</u>


https://www.cancer.gov/about-cancer/causes-prevention/risk

Registry for Environmental Exposures Which Cause Cancer


- National Toxicology Program (NTP)
 - <u>Report on Carcinogens</u>
 Released every five years, most recently in 2021
 - <u>15th RoC Dashboard</u> Searchable by substance and cancer type

International Agency for Research on Cancer (IARC)

The National Cancer Institute's Surveillance, Epidemiology, and End Results Program (SEER)

- Surveillance, Epidemiology, and End Results Program
- <u>Cancer Statistics Explorer Network</u>
- Cancer Stat Facts
- Preliminary Cancer Incidence Rates and Trends, 2000-2022

Examining Urban Brownfields through the Public Health "Macroscope"

Jill S. Litt, Nga L. Tran, and Thomas A. Burke

UCONN

Department of Health Policy and Management, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA

Efforts to cope with the legacy of our industrial cities-blight, poverty, environmental degradation, ailing communities-have galvanized action across the public and private sectors to move vacant industrial land, also referred to as brownfields, to productive use; to curb sprawling development outside urban areas; and to reinvigorate urban communities. Such efforts, however, may be proceeding without thorough investigations into the environmental health and safety risks associated with industrial brownfields properties and the needs of affected neighborhoods. We describe an approach to characterize vacant and underused industrial and commercial properties in Southeast Baltimore and the health and well being of communities living near these properties. The screening algorithm developed to score and rank properties in Southeast Baltimore (n = 182) showed that these sites are not benign. The historical data revealed a range of hazardous operations, including metal smelting, oil refining, warehousing, and transportation, as well as paints, plastics, and metals manufacturing. The data also identified hazardous substances linked to these properties, including heavy metals, solvents, polycyclic aromatic hydrocarbons, plasticizers, and insecticides, all of which are suspected or recognized toxicants and many of which are persistent in the environment. The health analysis revealed disparities across Southeast Baltimore communities, including excess deaths from respiratory illness (lung cancer, chronic obstructive pulmonary disease, influenza, and pneumonia), total cancers, and a "leading cause of death" index and a spatial and statistical relationship between environmentally degraded brownfields areas and at-risk communities. Brownfields redevelopment is a key component of our national efforts to address environmental justice and health disparities across urban communities and is critical to urban revitalization. Incorporating public health into brownfields-related cleanup and land-use decisions will increase the odds for successful neighborhood redevelopment and long-term public health benefits. Key words: brownfields, cumulative risk, health disparities, urban health, waste management. Environ Health Perspect 110(suppl 2):183-193 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-2/183-193litt/abstract.html

sources (municipal wastewater treatment plants and industrial discharges) and nonpoint sources of pollution that are required by federal, state, or local environmental laws. The U.S. EPA defines "institutional controls" as they relate to hazardous waste sites as "legal mechanisms designed to control exposures to chemicals in environmental media, including soil and groundwater" (5).

The cleanup and redevelopment of vacant industrial land are issues that will affect poor, working-class, and minority communities, for better or worse (6, 7). At first glance, the prospects of cleanup and concomitant redevelopment may be tantalizing given the promised economic benefits. At second glance, however, expedited cleanup and redevelopment may come at the community's expense—environmental, social, economic, and public health harm—given the environmental unknowns of brownfields and the sensitive populations living in affected areas (7).

This study provides a starting point for investigators to examine brownfields through a public health lens—that is, to examine the potential hazards of brownfields both at a

State Cancer Data Sources

State	Website	Data Type
СТ	The <u>DPH Interactive Map</u> of CT Tumor Registry	Data for different types of cancer by town for two time periods: 1998-2002 and 2010-2014
MA	MA Environmental Public Health Tracking: Cancer	Click on Explore Maps and Tables Massachusetts age-and gender-specific cancer rates applied to local (i.e., community or census tract) population
ME	<u>Maine Cancer Registry –</u> <u>Available Reports</u>	Annual reports and snapshots of specific cancer types
NH	<u>NH DHHS Data Portal:</u> Cancer	The program is organized into three components, the Breast and Cervical Cancer Program, the Comprehensive Cancer Control Program, and the New Hampshire State Cancer Registry.
RI	Rhode Island Cancer Data	Links to the RI Comprehensive Cancer Control Program and Cancer Registry
VT	Cancer in Vermont	Link to a series of state and county-based data reports about cancer incidence in Vermont

UCONN | UNIVERSITY OF CONNECTICUT

CIVIL AND ENVIRONMENTAL ENGINEERING

Technical Assistance for Brownfields Program

